Alone-and-Slow
≡
ホーム
情報
数学関連
コンテンツ
自作ソフト
サポート
お問い合わせ
トップページ
>
記事の分類
>
数学論理
>
和分差分学
>
逆数の差分の証明
逆数の差分の証明
逆数の差分の証明です。
更新日:
2022/12/08 06:29
目次
前進差分
後退差分
中心差分
完成した公式
前進差分
∆
h
f
(
x
)
∆
h
x
=
f
(
x
+
h
)
-
f
(
x
)
h
変形して
f
(
x
+
h
)
=
h
∆
h
f
(
x
)
∆
h
x
-
f
(
x
)
…①
①より
∆
h
1
f
(
x
)
∆
h
x
=
1
f
(
x
+
h
)
-
1
f
(
x
)
h
=
f
(
x
)
-
f
(
x
+
h
)
h
f
(
x
+
h
)
f
(
x
)
=
-
(
∆
h
f
(
x
)
∆
h
x
)
f
(
x
+
h
)
f
(
x
)
=
-
(
∆
h
f
(
x
)
∆
h
x
)
(
h
∆
h
f
(
x
)
∆
h
x
-
f
(
x
)
)
f
(
x
)
=
(
∆
f
(
x
)
∆
x
)
(
f
(
x
)
-
h
∆
h
f
(
x
)
∆
h
x
)
f
(
x
)
=
(
∆
f
(
x
)
∆
x
)
(
f
(
x
)
)
2
-
h
∆
h
f
(
x
)
∆
h
x
f
(
x
)
よって
∆
h
1
f
(
x
)
∆
h
x
=
-
(
∆
h
f
(
x
)
∆
h
x
)
(
f
(
x
)
)
2
-
h
∆
h
f
(
x
)
∆
h
x
f
(
x
)
後退差分
∇
h
f
(
x
)
∇
h
x
=
f
(
x
)
-
f
(
x
-
h
)
h
変形して
f
(
x
-
h
)
=
f
(
x
)
-
h
∇
h
f
(
x
)
∇
h
x
…①
①より
∇
h
1
f
(
x
)
∇
h
x
=
1
f
(
x
)
-
1
f
(
x
-
h
)
h
=
f
(
x
-
h
)
-
f
(
x
)
h
f
(
x
)
f
(
x
-
h
)
=
-
(
∇
h
f
(
x
)
∇
h
x
)
f
(
x
)
f
(
x
-
h
)
=
-
(
∇
h
f
(
x
)
∇
h
x
)
f
(
x
)
(
f
(
x
)
-
h
∇
h
f
(
x
)
∇
h
x
)
=
(
∇
h
f
(
x
)
∇
h
x
)
f
(
x
)
(
h
∇
h
f
(
x
)
∇
h
x
-
f
(
x
)
)
=
(
∇
h
f
(
x
)
∇
h
x
)
h
∇
h
f
(
x
)
∇
h
x
f
(
x
)
-
(
f
(
x
)
)
2
よって
∇
h
1
f
(
x
)
∇
h
x
=
(
∇
h
f
(
x
)
∇
h
x
)
h
∇
h
f
(
x
)
∇
h
x
f
(
x
)
-
(
f
(
x
)
)
2
中心差分
M
x
f
(
x
)
=
f
(
x
+
h
2
)
+
f
(
x
-
h
2
)
2
=
2
f
(
x
+
h
2
)
-
f
(
x
+
h
2
)
+
f
(
x
-
h
2
)
2
=
f
(
x
+
h
2
)
-
h
2
δ
h
f
(
x
)
δ
h
x
変形して
f
(
x
+
h
2
)
=
M
x
f
(
x
)
+
h
2
δ
h
f
(
x
)
δ
h
x
…①
M
x
f
(
x
)
=
f
(
x
+
h
2
)
+
f
(
x
-
h
2
)
2
=
f
(
x
+
h
2
)
-
f
(
x
-
h
2
)
+
2
f
(
x
-
h
2
)
2
=
f
(
x
-
h
2
)
+
h
2
δ
h
f
(
x
)
δ
h
x
変形して
f
(
x
-
h
2
)
=
M
x
f
(
x
)
-
h
2
δ
h
f
(
x
)
δ
h
x
…②
①と②より
δ
h
1
f
(
x
)
δ
h
x
=
1
f
(
x
+
h
2
)
-
1
f
(
x
-
h
2
)
h
=
f
(
x
-
h
2
)
-
f
(
x
+
j
2
)
h
f
(
x
+
h
2
)
f
(
x
-
h
2
)
=
-
(
δ
h
f
(
x
)
δ
h
x
)
f
(
x
+
h
2
)
f
(
x
-
h
2
)
=
-
(
δ
h
f
(
x
)
δ
h
x
)
(
M
x
f
(
x
)
+
h
2
δ
h
f
(
x
)
δ
h
x
)
(
M
x
f
(
x
)
-
h
2
δ
h
f
(
x
)
δ
h
x
)
=
-
(
δ
h
f
(
x
)
δ
h
x
)
(
M
x
f
(
x
)
)
2
-
(
h
2
δ
h
f
(
x
)
δ
h
x
)
2
=
(
δ
h
f
(
x
)
δ
h
x
)
(
h
2
δ
h
f
(
x
)
δ
h
x
)
2
-
(
M
x
f
(
x
)
)
2
よって
δ
h
1
f
(
x
)
δ
h
x
=
(
δ
h
f
(
x
)
δ
h
x
)
(
h
2
δ
h
f
(
x
)
δ
h
x
)
2
-
(
M
x
f
(
x
)
)
2
完成した公式
∆
h
1
f
(
x
)
∆
h
x
=
-
(
∆
h
f
(
x
)
∆
h
x
)
(
f
(
x
)
)
2
-
h
∆
h
f
(
x
)
∆
h
x
f
(
x
)
∇
h
1
f
(
x
)
∇
h
x
=
(
∇
h
f
(
x
)
∇
h
x
)
h
∇
h
f
(
x
)
∇
h
x
f
(
x
)
-
(
f
(
x
)
)
2
δ
h
1
f
(
x
)
δ
h
x
=
(
δ
h
f
(
x
)
δ
h
x
)
(
h
2
δ
h
f
(
x
)
δ
h
x
)
2
-
(
M
x
f
(
x
)
)
2
ただし
M
x
f
(
x
)
=
f
(
x
+
h
2
)
+
f
(
x
-
h
2
)
2