Alone-and-Slow
≡
ホーム
情報
数学関連
コンテンツ
自作ソフト
サポート
お問い合わせ
トップページ
>
記事の分類
>
数学論理
>
和分差分学
>
積の差分の証明
積の差分の証明
積の差分の証明です。
更新日:
2022/12/08 06:29
目次
前進差分
後退差分
中心差分
完成した公式
前進差分
∆
h
(
f
(
x
)
g
(
x
)
)
∆
h
x
=
f
(
x
+
h
)
g
(
x
+
h
)
-
f
(
x
)
g
(
x
)
(
x
+
h
)
-
x
=
f
(
x
+
h
)
g
(
x
+
h
)
-
f
(
x
)
g
(
x
)
h
+
f
(
x
)
g
(
x
+
h
)
-
f
(
x
)
g
(
x
+
h
)
h
=
f
(
x
+
h
)
g
(
x
+
h
)
-
f
(
x
)
g
(
x
+
h
)
h
+
f
(
x
)
g
(
x
+
h
)
-
f
(
x
)
g
(
x
)
h
=
∆
h
f
(
x
)
∆
h
x
g
(
x
+
h
)
+
f
(
x
)
∆
h
g
(
x
)
∆
h
x
=
∆
h
f
(
x
)
∆
h
x
g
(
x
+
h
)
+
f
(
x
)
∆
h
g
(
x
)
∆
h
x
+
(
∆
h
f
(
x
)
∆
h
x
g
(
x
)
-
∆
h
f
(
x
)
∆
h
x
g
(
x
)
)
=
f
(
x
)
∆
h
g
(
x
)
∆
h
x
+
∆
h
f
(
x
)
∆
h
x
g
(
x
)
+
∆
h
f
(
x
)
∆
h
x
(
g
(
x
+
h
)
-
g
(
x
)
)
=
f
(
x
)
∆
h
g
(
x
)
∆
h
x
+
∆
h
f
(
x
)
∆
h
x
g
(
x
)
+
h
∆
h
f
(
x
)
∆
h
x
∆
h
g
(
x
)
∆
h
x
よって
∆
h
(
f
(
x
)
g
(
x
)
)
∆
h
x
=
f
(
x
)
∆
h
g
(
x
)
∆
h
x
+
∆
h
f
(
x
)
∆
h
x
g
(
x
)
+
h
∆
h
f
(
x
)
∆
h
x
∆
h
g
(
x
)
∆
h
x
後退差分
∇
h
(
f
(
x
)
g
(
x
)
)
∇
h
x
=
f
(
x
)
g
(
x
)
-
f
(
x
-
h
)
g
(
x
-
h
)
h
=
f
(
x
)
g
(
x
)
-
f
(
x
-
h
)
g
(
x
-
h
)
h
+
f
(
x
)
g
(
x
-
h
)
-
f
(
x
)
g
(
x
-
h
)
h
=
f
(
x
)
g
(
x
)
-
f
(
x
)
g
(
x
-
h
)
h
+
f
(
x
)
g
(
x
-
h
)
-
f
(
x
-
h
)
g
(
x
-
h
)
h
=
f
(
x
)
∇
h
g
(
x
)
∇
h
x
+
∇
h
f
(
x
)
∇
h
x
g
(
x
-
h
)
=
f
(
x
)
∇
h
g
(
x
)
∇
h
x
+
∇
h
f
(
x
)
∇
h
x
g
(
x
-
h
)
+
(
∇
h
f
(
x
)
∇
h
x
g
(
x
)
-
∇
h
f
(
x
)
∇
h
x
g
(
x
)
)
=
f
(
x
)
∇
h
g
(
x
)
∇
h
x
+
∇
h
f
(
x
)
∇
h
x
g
(
x
)
+
∇
h
f
(
x
)
∇
h
x
(
g
(
x
-
h
)
-
g
(
x
)
)
=
f
(
x
)
∇
h
g
(
x
)
∇
h
x
+
∇
h
f
(
x
)
∇
h
x
g
(
x
)
-
h
∇
h
f
(
x
)
∇
h
x
∇
h
g
(
x
)
∇
h
x
よって
∇
h
(
f
(
x
)
g
(
x
)
)
∇
h
x
=
f
(
x
)
∇
h
g
(
x
)
∇
h
x
+
∇
h
f
(
x
)
∇
h
x
g
(
x
)
-
h
∇
h
f
(
x
)
∇
h
x
∇
h
g
(
x
)
∇
h
x
中心差分
M
x
f
(
x
)
=
f
(
x
+
h
2
)
+
f
(
x
-
h
2
)
2
=
2
f
(
x
+
h
2
)
-
f
(
x
+
h
2
)
+
f
(
x
-
h
2
)
2
=
f
(
x
+
h
2
)
-
h
2
δ
h
f
(
x
)
δ
h
x
変形して
f
(
x
+
h
2
)
=
M
x
f
(
x
)
+
h
2
δ
h
f
(
x
)
δ
h
x
…①
M
x
f
(
x
)
=
f
(
x
+
h
2
)
+
f
(
x
-
h
2
)
2
=
f
(
x
+
h
2
)
-
f
(
x
-
h
2
)
+
2
f
(
x
-
h
2
)
2
=
f
(
x
-
h
2
)
+
h
2
δ
h
f
(
x
)
δ
h
x
変形して
f
(
x
-
h
2
)
=
M
x
f
(
x
)
-
h
2
δ
h
f
(
x
)
δ
h
x
…②
M
x
g
(
x
)
=
g
(
x
+
h
2
)
+
g
(
x
-
h
2
)
2
=
2
g
(
x
+
h
2
)
-
g
(
x
+
h
2
)
+
g
(
x
-
h
2
)
2
=
g
(
x
+
h
2
)
-
h
2
δ
h
g
(
x
)
δ
h
x
変形して
g
(
x
+
h
2
)
=
M
x
g
(
x
)
+
h
2
δ
h
g
(
x
)
δ
h
x
…③
M
x
g
(
x
)
=
g
(
x
+
h
2
)
+
g
(
x
-
h
2
)
2
=
g
(
x
+
h
2
)
-
g
(
x
-
h
2
)
+
2
g
(
x
-
h
2
)
2
=
g
(
x
-
h
2
)
+
h
2
δ
h
g
(
x
)
δ
h
x
変形して
g
(
x
-
h
2
)
=
M
x
g
(
x
)
-
h
2
δ
h
g
(
x
)
δ
h
x
…④
①~④より
δ
h
(
f
(
x
)
g
(
x
)
)
δ
h
x
=
f
(
x
+
h
2
)
g
(
x
+
h
2
)
-
f
(
x
-
h
2
)
g
(
x
-
h
2
)
h
=
(
M
x
f
(
x
)
+
h
2
δ
h
f
(
x
)
δ
h
x
)
(
M
x
g
(
x
)
+
h
2
δ
h
g
(
x
)
δ
h
x
)
h
-
(
M
x
f
(
x
)
-
h
2
δ
h
f
(
x
)
δ
h
x
)
(
M
x
g
(
x
)
-
h
2
δ
h
g
(
x
)
δ
h
x
)
h
=
M
x
f
(
x
)
M
x
g
(
x
)
+
h
2
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
+
M
x
f
(
x
)
h
2
δ
h
g
(
x
)
δ
h
x
+
(
h
2
)
2
δ
h
f
(
x
)
δ
h
x
δ
h
g
(
x
)
δ
h
x
h
-
M
x
f
(
x
)
M
x
g
(
x
)
-
h
2
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
-
M
x
f
(
x
)
h
2
δ
h
g
(
x
)
δ
h
x
+
(
h
2
)
2
δ
h
f
(
x
)
δ
h
x
δ
h
g
(
x
)
δ
h
x
h
=
h
2
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
+
M
x
f
(
x
)
h
2
δ
h
g
(
x
)
δ
h
x
h
-
-
h
2
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
-
M
x
f
(
x
)
h
2
δ
h
g
(
x
)
δ
h
x
h
=
h
2
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
+
M
x
f
(
x
)
h
2
δ
h
g
(
x
)
δ
h
x
h
+
h
2
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
+
M
x
f
(
x
)
h
2
δ
h
g
(
x
)
δ
h
x
h
=
h
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
+
M
x
f
(
x
)
h
δ
h
g
(
x
)
δ
h
x
h
=
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
+
M
x
f
(
x
)
δ
h
g
(
x
)
δ
h
x
よって
δ
h
(
f
(
x
)
g
(
x
)
)
δ
h
x
=
M
x
f
(
x
)
δ
h
g
(
x
)
δ
h
x
+
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
完成した公式
∆
h
(
f
(
x
)
g
(
x
)
)
∆
h
x
=
f
(
x
)
∆
h
g
(
x
)
∆
h
x
+
∆
h
f
(
x
)
∆
h
x
g
(
x
)
+
h
∆
h
f
(
x
)
∆
h
x
∆
h
g
(
x
)
∆
h
x
∇
h
(
f
(
x
)
g
(
x
)
)
∇
h
x
=
f
(
x
)
∇
h
g
(
x
)
∇
h
x
+
∇
h
f
(
x
)
∇
h
x
g
(
x
)
-
h
∇
h
f
(
x
)
∇
h
x
∇
h
g
(
x
)
∇
h
x
δ
h
(
f
(
x
)
g
(
x
)
)
δ
h
x
=
M
x
f
(
x
)
δ
h
g
(
x
)
δ
h
x
+
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
ただし
M
x
f
(
x
)
=
f
(
x
+
h
2
)
+
f
(
x
-
h
2
)
2
M
x
g
(
x
)
=
g
(
x
+
h
2
)
+
g
(
x
-
h
2
)
2