Alone-and-Slow
≡
ホーム
情報
数学関連
コンテンツ
自作ソフト
サポート
お問い合わせ
トップページ
>
記事の分類
>
数学論理
>
和分差分学
>
商の差分の証明
商の差分の証明
商の差分の証明です。
更新日:
2022/12/08 06:29
目次
前進差分
後退差分
中心差分
完成した公式
前進差分
∆
h
f
(
x
)
g
(
x
)
∆
h
x
=
∆
h
(
f
(
x
)
1
g
(
x
)
)
∆
h
x
=
f
(
x
)
∆
h
1
g
(
x
)
∆
h
x
+
∆
h
f
(
x
)
∆
h
x
1
g
(
x
)
+
h
∆
h
f
(
x
)
∆
h
x
∆
h
1
g
(
x
)
∆
h
x
=
f
(
x
)
(
∆
h
g
(
x
)
∆
h
x
)
(
g
(
x
)
)
2
-
h
∆
h
g
(
x
)
∆
h
x
g
(
x
)
+
∆
h
f
(
x
)
∆
h
x
1
g
(
x
)
+
h
∆
h
f
(
x
)
∆
h
x
(
∆
h
g
(
x
)
∆
h
x
)
(
g
(
x
)
)
2
-
h
∆
h
g
(
x
)
∆
h
x
g
(
x
)
=
f
(
x
)
∆
h
g
(
x
)
∆
h
x
+
∆
h
f
(
x
)
∆
h
x
(
g
(
x
)
-
h
∆
h
g
(
x
)
∆
h
x
)
+
h
∆
h
f
(
x
)
∆
h
x
∆
h
g
(
x
)
∆
h
x
(
g
(
x
)
)
2
-
h
∆
h
g
(
x
)
∆
h
x
g
(
x
)
=
f
(
x
)
∆
h
g
(
x
)
∆
h
x
+
∆
h
f
(
x
)
∆
h
x
g
(
x
)
-
h
∆
h
f
(
x
)
∆
h
x
∆
h
g
(
x
)
∆
h
x
+
h
∆
h
f
(
x
)
∆
h
x
∆
h
g
(
x
)
∆
h
x
(
g
(
x
)
)
2
-
h
∆
h
g
(
x
)
∆
h
x
g
(
x
)
=
f
(
x
)
∆
h
g
(
x
)
∆
h
x
+
∆
h
f
(
x
)
∆
h
x
g
(
x
)
(
g
(
x
)
)
2
-
h
∆
h
g
(
x
)
∆
h
x
g
(
x
)
よって
∆
h
f
(
x
)
g
(
x
)
∆
h
x
=
f
(
x
)
∆
h
g
(
x
)
∆
h
x
+
∆
h
f
(
x
)
∆
h
x
g
(
x
)
(
g
(
x
)
)
2
-
h
∆
h
g
(
x
)
∆
h
x
g
(
x
)
後退差分
∇
h
f
(
x
)
g
(
x
)
∇
h
x
=
∇
h
(
f
(
x
)
1
g
(
x
)
)
∇
h
x
=
f
(
x
)
∇
h
1
g
(
x
)
∇
h
x
+
∇
h
f
(
x
)
∇
h
x
1
g
(
x
)
-
h
∇
h
f
(
x
)
∇
h
x
∇
h
1
g
(
x
)
∇
h
x
=
f
(
x
)
(
∇
h
g
(
x
)
∇
h
x
)
h
∇
h
g
(
x
)
∇
h
x
g
(
x
)
-
(
g
(
x
)
)
2
+
∇
h
f
(
x
)
∇
h
x
1
g
(
x
)
-
h
∇
h
f
(
x
)
∇
h
x
(
∇
h
g
(
x
)
∇
h
x
)
h
∇
h
g
(
x
)
∇
h
x
g
(
x
)
-
(
g
(
x
)
)
2
=
f
(
x
)
∇
h
g
(
x
)
∇
h
x
+
∇
h
f
(
x
)
∇
h
x
(
h
∇
h
g
(
x
)
∇
h
x
-
g
(
x
)
)
-
h
∇
h
f
(
x
)
∇
h
x
∇
h
g
(
x
)
∇
h
x
h
∇
h
g
(
x
)
∇
h
x
g
(
x
)
-
(
g
(
x
)
)
2
=
f
(
x
)
∇
h
g
(
x
)
∇
h
x
-
∇
h
f
(
x
)
∇
h
x
g
(
x
)
+
h
∇
h
f
(
x
)
∇
h
x
∇
h
g
(
x
)
∇
h
x
-
h
∇
h
f
(
x
)
∇
h
x
∇
h
g
(
x
)
∇
h
x
h
∇
h
g
(
x
)
∇
h
x
g
(
x
)
-
(
g
(
x
)
)
2
=
f
(
x
)
∇
h
g
(
x
)
∇
h
x
-
∇
h
f
(
x
)
∇
h
x
g
(
x
)
h
∇
h
g
(
x
)
∇
h
x
g
(
x
)
-
(
g
(
x
)
)
2
よって
∇
h
f
(
x
)
g
(
x
)
∇
h
x
=
f
(
x
)
∇
h
g
(
x
)
∇
h
x
-
∇
h
f
(
x
)
∇
h
x
g
(
x
)
h
∇
h
g
(
x
)
∇
h
x
g
(
x
)
-
(
g
(
x
)
)
2
中心差分
M
x
1
g
(
x
)
=
1
g
(
x
+
h
2
)
+
1
g
(
x
-
h
2
)
2
=
g
(
x
-
h
2
)
+
g
(
x
+
h
2
)
2
g
(
x
+
h
2
)
g
(
x
-
h
2
)
=
M
x
g
(
x
)
g
(
x
+
h
2
)
g
(
x
-
h
2
)
=
M
x
g
(
x
)
(
M
x
g
(
x
)
)
2
-
(
h
2
δ
h
g
(
x
)
δ
h
x
)
2
=
-
M
x
g
(
x
)
(
h
2
δ
h
g
(
x
)
δ
h
x
)
2
-
(
M
x
g
(
x
)
)
2
…①
δ
h
f
(
x
)
g
(
x
)
δ
h
x
=
δ
h
(
f
(
x
)
1
g
(
x
)
)
δ
h
x
=
δ
h
f
(
x
)
δ
h
x
M
x
1
g
(
x
)
+
M
x
f
(
x
)
δ
h
1
g
(
x
)
δ
h
x
=
M
x
f
(
x
)
(
δ
h
g
(
x
)
δ
h
x
)
(
h
2
δ
h
g
(
x
)
δ
h
x
)
2
-
(
M
x
g
(
x
)
)
2
-
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
(
h
2
δ
h
g
(
x
)
δ
h
x
)
2
-
(
M
x
g
(
x
)
)
2
=
M
x
f
(
x
)
δ
h
g
(
x
)
δ
h
x
-
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
(
h
2
δ
h
g
(
x
)
δ
h
x
)
2
-
(
M
x
g
(
x
)
)
2
よって
δ
h
f
(
x
)
g
(
x
)
δ
h
x
=
M
x
f
(
x
)
δ
h
g
(
x
)
δ
h
x
-
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
(
h
2
δ
h
g
(
x
)
δ
h
x
)
2
-
(
M
x
g
(
x
)
)
2
完成した公式
∆
h
f
(
x
)
g
(
x
)
∆
h
x
=
f
(
x
)
∆
h
g
(
x
)
∆
h
x
+
∆
h
f
(
x
)
∆
h
x
g
(
x
)
(
g
(
x
)
)
2
-
h
∆
h
g
(
x
)
∆
h
x
g
(
x
)
∇
h
f
(
x
)
g
(
x
)
∇
h
x
=
f
(
x
)
∇
h
g
(
x
)
∇
h
x
-
∇
h
f
(
x
)
∇
h
x
g
(
x
)
h
∇
h
g
(
x
)
∇
h
x
g
(
x
)
-
(
g
(
x
)
)
2
δ
h
f
(
x
)
g
(
x
)
δ
h
x
=
M
x
f
(
x
)
δ
h
g
(
x
)
δ
h
x
-
δ
h
f
(
x
)
δ
h
x
M
x
g
(
x
)
(
h
2
δ
h
g
(
x
)
δ
h
x
)
2
-
(
M
x
g
(
x
)
)
2
ただし
M
x
f
(
x
)
=
f
(
x
+
h
2
)
+
f
(
x
-
h
2
)
2
M
x
g
(
x
)
=
g
(
x
+
h
2
)
+
g
(
x
-
h
2
)
2